Eko, “149 Juta Anak di Dunia Alami Stunting Sebanyak 6,3 Juta di Indonesia, Wapres Minta Keluarga Prioritaskan Kebutuhan Gizi,” Direktorat Pendidikan Anak Usia Dini, 2023. https://paudpedia.kemdikbud.go.id/berita/149-juta-anak-di-dunia-alami-stunting-sebanyak-63-juta-di-indonesia-wapres-minta-keluarga-prioritaskan-kebutuhan-gizi?do=MTY2NC01YjRhOGZkNA==&ix=MTEtYmJkNjQ3YzA=
T. Beal, A. Tumilowicz, A. Sutrisna, D. Izwardy, and L. M. Neufeld, “A review of child stunting determinants in Indonesia,” Matern. Child Nutr., vol. 14, no. 4, pp. 1–10, 2018, doi: 10.1111/mcn.12617.
M. Wahid and Mujib Rahman, “Rakornas 2023: Pastikan Prevalensi Stunting Turun Menjadi 14% Pada Tahun 2024,” Kementerian Sekretariat Negara RI, 2023. https://stunting.go.id/rakornas-2023-pastikan-prevalensi-stunting-turun-menjadi-14-pada-tahun-2024/
M. Rosyidah, Y. L. R. Dewi, and I. Qadrijati, “Effects of Stunting on Child Development: A Meta-Analysis,” J. Matern. Child Heal., vol. 6, no. 1, pp. 25–34, 2021, doi: 10.26911/thejmch.2021.06.01.03.
A. Heryati, Erduandi, and Terttiaavini, “Penerapan Jaringan Saraf Tiruan Untuk Memprediksi Pencapaian Prestasi Mahasiswa,” in Konferensi Nasional Sistem Informasi 2018 STMIK Atma Luhur Pangkalpinang, 8 – 9 Maret 2018, 2018, pp. 8–9.
D. A. Safitri, D. Fitriani, L. Hertati, T. Terttiavini, A. Heryati, and Asmawati, “PKM Mahasiswa Indo Global Mandiri Pada E-Commerce Marketplace Era Pandemi Covid Meningkat Tajam,” J. Sustain. Community Serv., vol. 1, no. 4, pp. 192–208, 2021.
Hartatik et al., Data Science - Data Science, no. September 2016. 2023. [Online]. Available: https://www.data-science.ruhr/about_us/
D. Marcelina, A. Kurnia, and T. Terttiaavini, “Analisis Klaster Kinerja Usaha Kecil dan Menengah Menggunakan Algoritma K-Means Clustering,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. October, pp. 293–301, 2023.
M. Tahangnacca, R. Amiruddin, Ansariadi, and A. Syam, “Model of stunting determinants: A systematic review,” Enferm. Clin., vol. 30, pp. 241–245, 2020, doi: 10.1016/j.enfcli.2019.10.076.
M. S. Islam, A. N. Zafar Ullah, S. Mainali, M. A. Imam, and M. I. Hasan, “Determinants of stunting during the first 1,000 days of life in Bangladesh: A review,” Food Sci. Nutr., vol. 8, no. 9, pp. 4685–4695, 2020, doi: 10.1002/fsn3.1795.
T. R. Chowdhury, S. Chakrabarty, M. Rakib, S. Afrin, S. Saltmarsh, and S. Winn, “Factors associated with stunting and wasting in children under 2 years in Bangladesh,” Heliyon, vol. 6, no. 9, 2020, doi: 10.1016/j.heliyon.2020.e04849.
C. Scheffler and M. Hermanussen, “Stunting is the natural condition of human height,” Am. J. Hum. Biol., vol. 34, no. 5, pp. 1–13, 2022, doi: 10.1002/ajhb.23693.
T. Mulyaningsih, I. Mohanty, V. Widyaningsih, T. A. Gebremedhin, R. Miranti, and V. H. Wiyono, “Beyond personal factors: Multilevel determinants of childhood stunting in Indonesia,” PLoS One, vol. 16, no. 11 November, pp. 1–19, 2021, doi: 10.1371/journal.pone.0260265.
T. Huriah and N. Nurjannah, “Risk factors of stunting in developing countries: A scoping review,” Open Access Maced. J. Med. Sci., vol. 8, no. F, pp. 155–160, 2020, doi: 10.3889/oamjms.2020.4466.
M. S. Haris, M. Anshori, and A. N. Khudori, “Prediction of Stunting Prevalence in East Java Province With Random Forest Algorithm,” J. Tek. Inform., vol. 4, no. 1, pp. 11–13, 2023, doi: 10.52436/1.jutif.2023.4.1.614.
Harliana and D. Anggraini, “Penerapan Algoritma Naïve Bayes Pada Klasifikasi Status Gizi Balita di Posyandu Desa Kalitengah (Harliana, Dewi Anggraini),” FAHMA - J. Inform. Komputer, Bisnis dan Manaj., vol. 21, no. 2, pp. 38–45, 2023.
S. Lonang and D. Normawati, “Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination,” J. Media Inform. Budidarma, vol. 6, no. 1, p. 49, 2022, doi: 10.30865/mib.v6i1.3312.
T. Terttiaavini, Y. Hartono, E. Ermatita, and D. P. Rini, “Comparison of Simple Additive Weighting Method and Weighted Performance Indicator Method for Lecturer Performance Assessment,” Mod. Educ. Comput. Sci., vol. 15, no. 2, pp. 1–11, 2023, doi: 10.5815/ijmecs.2023.02.01.
T. Terttiaavini, S. amariena Hamim, and S. Agustri, “Aplikasi sistem pakar penentu bidang studi ditingkat perguruan tinggi berbasis web,” J. Ilm. Inform. …, vol. 7, no. 1, pp. 67–72, 2016, [Online]. Available: http://ejournal.uigm.ac.id/index.php/IG/article/view/188
S. Lonang, A. Yudhana, and M. Kunta Biddinika, “Analisis Komparatif Kinerja Algoritma Machine Learning untuk Deteksi Stunting,” J. Media Inform. Budidarma, vol. 7, pp. 2109–2117, 2023, doi: 10.30865/mib.v7i4.6553.
R. Kusumaningrum, T. A. Indihatmoko, S. R. Juwita, A. F. Hanifah, K. Khadijah, and B. Surarso, “Benchmarking of multi-class algorithms for classifying documents related to stunting,” Appl. Sci., vol. 10, no. 23, pp. 1–13, 2020, doi: 10.3390/app10238621.
A. Naik and L. Samant, “Correlation Review of Classification Algorithm Using Data Mining Tool: WEKA, Rapidminer, Tanagra, Orange and Knime,” Procedia Comput. Sci., vol. 85, no. Cms, pp. 662–668, 2016, doi: 10.1016/j.procs.2016.05.251.
KNIME Official, “KNIME Analytics Platform,” 2023. https://www.knime.com/knime-analytics-platform
N. Arminarahmah, A. D. GS, G. W. Bhawika, M. P. Dewi, and A. Wanto, “Mapping the Spread of Covid-19 in Asia Using Data Mining X-Means Algorithms,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1071, no. 1, p. 012018, 2021, doi: 10.1088/1757-899x/1071/1/012018.
%PDF-1.7 %µµµµ 1 0 obj <>/Metadata 836 0 R/ViewerPreferences 837 0 R>> endobj 2 0 obj <> endobj 3 0 obj <>/ExtGState<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/Annots[ 13 0 R 14 0 R 15 0 R] /MediaBox[ 0 0 595.32 841.92] /Contents 4 0 R/Group<>/Tabs/S/StructParents 0>> endobj 4 0 obj <> stream xœ½][s䶱~ߪý󒪙”‡"@ $S©Tv½vöboœìæäÁÉW¢¤YÍŒ µŽþýA7.¼ � —-K$H~h4ú†FãäÕm·9oN»ÅÿxòªëšÓËölñëÉç뛟|¾¿iO~i.6û¦Û\ïO>Ý}éàÒÛ¶9koÿô§Åë7ß/þóòEžåðOU•d‘/xͳ‚.*F²š.nÛ—/þùûÅþå‹×Ÿ_¾8ù‘,ꬋÏç/_@ã|AÏHÎUÎ2ÊŸw²Ù_>•‹‹ƒ|óâÿªô_yùâ×åûÕš/ïn÷Íj],·‹Õ¿Ÿß¿|ñƒ|ýß^¾8!<«Gp…þø»U±ÜŸ_¯ÖÕò¶ í)À¸œ—(B Žë3 AYÓ¬¤ÎçþOvW,·w«5[îàG;; Bä¥Ð÷Åì_£†8ð¹ù;GËŒ‰Ðç>"u³U�àÃŒe‚†>Læÿ\�‰`?ç里BŸ{/'êLÐ=üØÌþqQeÕÿ°¯%ÉhàsùnÙúô×%ÍgÿnE²"8SèüŸ Ê6ûçjIU9ˆnAYÖÊËLTRve\}îü÷s cIzÔsÓ H@C_[Ïþ5–ñ*ôµw I?}Z±åÇ?$Â…°ç˃ T>¿T$(„ÿ7‘_ù»ùë²QHà‡X‰åüÂB°¬¬ß~î€þG¿¦*¤n�™WfbÁ¸È8—ãÆ*;ñþ†ÿ.~øùûÅIÀª}}Ýu×»°aûãõu÷\Ã6<‘‹J²—kÄ]Â8tÝ 0ýNNÚ¯×ðª¬[ø õV³Íà÷/ðûAj´M†VïifØæ~Ê'ïähžY‘|¹=Ùìç_JªLÔ¡þœ¡5üßÕº”ÆÌš.oàïK‰8à9ü¸6p»öô8ÃÙ²ª39»Xá´ÊJÿ×z±Âf·`¹ü¢œj©z9þ–lFfÿÖd^³*+¤bè'vY×Þ¹½8ùtÓìabÿüý»7‹üä§f±X¶ûõ?>žë“ê|$ËŠ\ŽkÉŠ¬tûü0o{ûeU-q:îϤõ¾Q°^^À/êúbEÈòú©R«]Èÿp’ßʱy·“—°éqCVxz@+y©uág T‰’K‹½E¸?açL×nM¯T“‹ã±ú¨]Ô"#A¬7ë™ùe~ŒÖ ø°]�\eR˯o”$Ócxe@äýM"t’>Œ†ÐM¾ç›&$Ñ4¡\’X”ÒÕžŸžìï “_>ê £Þ÷EÞèîìäIÀ`Ò]#$„3‚€4é=Ô’€àDTÏVh`ç›õ�ïž ÌU£”g‚/D]K÷À#=Øòî°BK…È Ñ€!Ò¡ý²—· ÿ?6׸�{tóu„ÍÒ&áˆÀ¹4J%�séã=ñÁâ©`•Y]`ýþqX"Í°;J�80ìßÁPâà~º“ÃüUC077joo1@ˆjc¹B1Èþñn•‰¨-ýÎ*Dmú8¬*µë*£EˆÚ“¿NÇR(‰ªô�+FÛä3à¢î0Ò¼ D”µOŠGLfBfæJË\ ÁJ–²7®±ÝY÷.†‚4Pé®0úCÑâ¿‘>‚í`.³ÁÔÿÇm¾á<5~«Œ9Ë»þ‡^ƒ1´‡6Í~~j°Y³ÿP]zg=Ö±Wˆß—Žù•rf§Õ*ÐC+Fs0 ´ŠÄ9TšoË^ºM¾iÐF ›C©y�Õ/BÀÖÀæPk>`œfU�bŠá6ÛiÐÑ‹p åCXr” ¼3A ¥\›®_ÞÀ€‹�·Yú³´Î‚a£Ç»9‡Æót³(«¬DýçPy>`ÁÉþl`t�Ôż€ ç ›Gç9ʘÔ'»Fã%¨¢‰t‘”¥F|Îòg˜*í¨!œ:×ðc{½*ÁõäËÍâ4À«OW„ÕDö¿T„4•",š©~‚Æ°`*EÈ•·Rä>ŒP„4•"äÊ{ö‹P„4™"¬³
%PDF-1.7 %µµµµ 1 0 obj <>/Metadata 503 0 R/ViewerPreferences 504 0 R>> endobj 2 0 obj <> endobj 3 0 obj <>/ExtGState<>/XObject<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 595.32 842.04] /Contents 4 0 R/Group<>/Tabs/S/StructParents 0>> endobj 4 0 obj <> stream xœ½=ÛrÜ6²ï®ò?ð%UÃ-‹" ‚ }¶¶V¶ã�Ëë;{â<ÐÒH¢53ÒÎpìuÕ~üA7.¼£•ªÈ3�Ýh4úÞàñɶ©/ª³&úë_�Oš¦:»ZžG¿¼¹ýãøã÷Ûåñûê²ÞTM}³9þ°ÿÜÀ¥Ÿ–Õùrû·¿E/^½ŒþýôIš¤ð_Q¥/yÂhTd4I³h»|úäÿþmž>yññé“ã×$*“2�>^<}ƒÓˆD„e‰("Q¦I^D×rØ?>ˆèr'Ÿ]â·BûÇÓ'¿/ÞÄGl±‰�øb³ES7ûøˆ.š(þ#úøóÓ'?J8ÿûôI ¼ržä´‹¢£±ø5ÎõNþYJÈ¡s@¨’h‰EpLh*1!>LÞïþg€¿ªƒƒ¦y"˜ô5NzW‡Ÿq&oð‚m9 ©~ðërWWÁQ)²;P ?ó"O î÷iSÇù¾ó)� #4¡eèùþyÔhD\w‰ Q$t„ÚéÉÛX,^Æ|ñÏø([œÆåâ9*z³9¿Ù,cB»ZÚD?Ç„-nöÛMµŠnâbq�ãà) ë8_l–Ñ[ØÛ•¼´Ýà•ËHîn¹Ï£—òÛÍî¸ÝÇ$[4ðq¹!}€ŸÕ‡åælyÐҸ柕y’æžù‡€šÚyrpîgIÜy{ø³µ[R’4¼$–{‚úùIb‘/Ö°æË[�¿ULÒÅ%ʃç¡ÂÛSùP / O(ñ�»‚96Í-Ðtáóãã/’kõªä½EIàs�\zWêäFÅ \¬Ï�€ÇõÆ*³%�ñ?ð)±w]ɧâ‡cÜ ÕêìFÂ]—ARÒÇ£²atN’lî_È_«$ÅÒU~Q°+,1þ /‹Gåiˆïø)Q¨)æ3Í•¥8™¸êÑ�§/£cOÄöÅMÓܬýAÛ×77MÀ mÁ"GfR¡äós+K lýG‚Q70æ…yËSþ™îlÆ—’Ç÷1ã}~&cÒHÊBbn#IIÅ£of•Hô%z"Ê„FÒ÷M¥ó+QæÒcæûê铈ê‘ÆUä´ŒÔ眤Œ{±fò1Y¦èÂ’RŽH"�Áè3È™¼YW—K¹I^ÝDŠv�ôÝR�:Ÿ9/¤ë.wwžð1K¼úçår@ÌôÂ(Ž�ÏáŸk’:c+ðÜ1‰…rÔÐóçJ—h»�+._¯+Ìiœ©ø°¾Žý€YRž&”{f9öé‚Ä!¦î†4ÎÙ©HRßœÆ1�C åô¦R¦¿|s’<’]…+åg¸F7OϦ&Oò,/�JœA‚HYPrýÝJI 9xr)¤RÛ‰©ï0ý{÷–ŽÌZfà¢ã·Õ&púòÍ«(=~[m.£E}~ôæUü0ó�k’÷]Q‰R$¤,£cÚ¾¼�½¾ŽËÊ” Õ™üW~i `�lbBðç·vø[&…ˆ¦›‹èT¬x×Ù•|Þ¶YFpÓ[LÚ˜Ÿu ¼Ä»7—xûÉJ ©KNg¿6ð¯Ö;ŒX^@\M…ÑÑÉ.údBÅ÷Ür1ß`áÈLGY ~J^Š„8rцVËsC°3IdL‘ՆȊ¾/¯`ðâJŽEm}hbˆY–‹Íð–{'Lõ„—›£ß>œ0“ �pß„'¬€XæBLú…DLJ¸òAˆeX„ºö6- “K1VŽð:1KZ™•¯•Ý`? Y!Yã½Î«‹Ï8vsn÷0r„›èDò<èRÀ�…ÞkHûVꙡ÷(c(˜Ýó<±Éä“ÉK©¡†¢ÆÍÛ ËHÂ}ˆF78n‘Ü~Óì¯g€ UÓfèb}>ëC:ödV@fÏ-¥hÔÜy-Wgåœ~û °k3�”·JËA^¶²»£¿�®ƒ˜•m÷L&�8@br‡Ø“›OÜëºä1uçÿ¤‹—ÓþGÔP€¡Ìâ‹«è=DÕ¶¸EJÓ}«á_ì›âˆ{çQáá<ÉŠ�µ-+F#¦Md£‚@ÌI¶6Üòlº–ó¬+KŒûÖõ#Ø:[eš?u‹‹ýÝßÍ„Õ$!,mÇr2*í–Ò·œtb$]LjIC2c>ÄþšÏ˜t8rá[Æg‚sÌ.¿ƒì‡êCÇì¤ÞñÎîÝ~‹5ª'Ûu|$ŒtAÁQâçJ^+´X M…Œf -'Ë9¨�I^/Ë.€#Ó�&Di9â×òùy*•){�7Ç‚ 6Z ’3¨‘ÉÓ4cCŠL@, œˆå6uãuØnuB+Pw»Á¯&!RçåTÞ'FÆVâövä¥-«¬Ö ÅP«4¥É‡åy3]C„‰ûÐúPï¤Ó,ƒûA• >°ág™“¤(}àÚÒò¾oËK«ÝE·pÊ�ì2ÞÏ& –٪ķký@–Äîuumk’WMéÜ8¸®+,ZÅßðâ/måð½«Y‚{kŽcz}°+(‘Í0Ññl–ºÅÒ^é0EY„ðp<% ŒE¼à.)ùÛˆYÅ:ìiÏ©ÍßÅù¸¸DfèÔw ð�BýlJâ%B§•d*�U®k±kéÙH‚uÎgnha%KRáÃ{ 3é|A!ÖÀÚ²aE§Æf .²„�épŸ6¢a¨†�+çQ T: Ý3ø8bÿµå§ú°@‘s#r(Íðà0þ�“ó€ioݱŽÅ¢jjÕ®6!•�Τ)In€ù *œ†Èê8P‡:m�ˆ…Ⱦ8+! éAl¤ìïÇ3Œ5Æ“³„{WVíÄk°!6VIý ”x©£7vƒ^Hñ £“†qÃƶˆ”0©g»ù£sàfuÔÃ’ÏCR`ÏÏ©KGÝc;¾@Ÿ;´ZÕëÖÎlª�U5§'ð÷Eœ©¯/°}©¶ Å°È&|M8ñMT[¾fB3õâ: i™-VSøb6'#<œ“„ñ!6“ÑN²z8+]¡§Ã7™Q¨.ñ€_�ÎyRú �bj¬^M ~ˆ\ŠÓÄÌ IåÄ/ÂÀ¢(P„Ü”0¶¦‹*H8”ŽÝÈ ¡="¡âi”£¹oѾÕßj”$�µf¯/ ÃrÁê¬Û´zùEˆÄŠ'l%˜gméFG~.Ã8�{]'$tXˆ„ŽÓ4/ “çY×ê+h-;©“]Õ ¸ #\ý]ª¶?»Þä¶H!eàAúÐ@³ƒÆ.8¯0!Å#ññ ›À+�"®Š*6X&ÛÄÖþ¡8h£ÒTÙâïh4¯cŽßê•åŽ3U¬—ûÑ�Q•å2\¡vÓ+ܦT‹…¨Êòtš’è´x`T‘…ˆkgQ1ª+°ºÄ±_— ÎTµ¦ª„¬ºü´TŒŽÛqâÂêsà=b�pãþN•‡J†ü:E1y)UÙ7ŠSh"ÚçBŒ‘$#nÄÐ6R /éaÍÕNÀ%Æm�€å³³¬DÈÍÕ℈ì¹pÌ8TÙN[µàTØß·4�`^d!‚g.¥½åÃq’.ËBÏ\ˆå]?7bÿsU°§$ÙW+Ävx"ѹòôïG>D€Í…|‰Mä_ÅTÚ3À³TŠÜbÂ!"m„ÁÂM\B;R®HNáS*ñ�¶!"h.|¡µÓ«"¦°íLz—É‘Ì»ŸÛBÍqu¦XÀ(áÛ«¹ú6™…gRÂLwLägU<‹‘ך€«2Yðê%�à8Ø•pÙ„E˜ÉÌ`e ÙDï¶Äê2ÑJ�©»r&ã#£)Æ—'Ñ1¸Ãè6²Ùì�â?-“lO} Øí6&Bi‚Ý-¦(ô†¼†~øriVød�BËbõ„à[A.!!nÔÑf‘¾¶3´æì˜Éharáa[¸éû1&¥"ê¶_·I�5ýpŠ:Æ\Ø ¡CÓÎèò.ÿºÍ•�TÞjVP#üÄB.è pAÕ\[8N>ïݦ˜c,¢9´¾uÀJØÔã>…$3å>ÍQ"‡èCòÈä2Xå˜Àtdd™NõNJ,¤=Þ€ÐBcæ»J·–ë1°/á~]Õª5'G•Ö˜Hñ¨�ÛÙÞ»ƒ¦¯mmÉ”b’›ëÝn¯*;åä~)��ð•ªøTÐn”@ÆêR€uÁ¦wH(MžŽP<-,W̹<Ý�™)ÜV`¿]uæŽÓÞnFÈømWïše¬DR£Ñ=7«Áçè'¨ûÄbµ2SÅ}QëÒÊÜeˆ_¥.ô§6"êJ7C©‡_©§Ü”ÃĤ›‘8&øFamƒ‰%äVµ)/£˜rµD¬”\Ñ uiÀ„-oT´újÆâœ÷vù¥põãpE&àešYª· Zµ¥ÜàšÉkú¼Eyßà^¦—®^ã5ý”æF!Ãô‚ŒàßþvkÁW¨øå‡Ó8oI¢ØwÓ. û®‰¹Ý¨f'ÃhíŒ>-àH»SøŽ÷|ŠñòúwƒPhDàŸD寈Ѷ¢\Ÿ5xy×€³·ÄnËìX�Åô™YR” JrÀœ ®À uHŒ#pꛣ‹‹ñÖüj–lõ=ŒDG^š¨é¼Ó�Ò�ٞŹq¾á÷5ü¤óÆp¢:Jñ²+h ›|5rfõµCõ×Bo9C}o7ÊeksÖx>3Þ¾†ãçjì;ìv©¿¶�Rë»fïÝ35ë_‚®CÆ8t yÖá°ÔøV�Æ‚Ö»¥aCµ†(ĹºÙ·B-ãç–�;¹bmÍGGRϵ}XÇ,�²¸LVG¨dЦ‹×ŒUsÂÂZ>¤{Ì�XâyÇ0�RM´Ý–Fÿо€>Êèâä˜|o•¨•uÀ:†@rÜûÙQõ®¾Ñ…_:¦åXÛÉ»~]žù¹jÓZa Ì2¶¾‡À�φf‘D©·Éóþ—?#%tRáz‡ûG-IOwËÁ¿¼ƒíøwî�ju ’¤,�æÂèCÔ‘ê#Ú�`Vú¬ncRÌÄvÒ]ËÇú:7ŠK´Ú5’ˆR—í#¯®cÂ;©¯ÂmJäÖg5|Q I�_Ò>R¬:¦^9c(æϸoÆN‹mÃd‚=¢ön„/Ï DÕƒï/#DCú+qÇZSsÀ�–ÝÈ0V{Ä�²ÔÑšCÝHSPœÜX;Ȧ`yâ/¸-¯Ó¢Œ—fݯ•a:«�×ú†×7VÏ"4s`ükÏ}FK³‡C©3O—ç„ÂáÀ7µø¶.É iª}nd¶v>ÁA�x†XÇ$UŸ8üùA’ŒOWµfu»>¯ óìµjÚ<ó k&�¢ðƒÚ�Å6vGò®ö oÓnD Ÿ(Fs�€PÏŒIFië7(W9�M«8Ϊ¥qKÚKãîZRjUvëZWµƒêgƒBóm Œ½é ò(é±;j¡ú4þøNò[×OÚ¢!ÉB[’œbÿ裰ˆÙ^)ƒ¹§X’yé°$EÇ�TcŒT1=R‚X†@! 2 6�qaT¥i8‡·Œ#ïTûKkÖÍwøE´A^ô ”¼ìFîzbyÖ#9fê¦h`k�”P“ç�u—_lIyf�u峂G(R<£M‡ðú¿±lKo¶�QcÌ^ù´‘ª�ëæ³êåj�¬z½¼¸Õ¬xYÍõ�^9>6“×u«Ó ¥"k�üZâVUs¸m…Z‡Š¹àïÓüYŸi“Q>éBiexLª}eüç�¹ Z)ZC‚ƒU-»±=õÝnÜvåe¡¥ù~0M»>ú±Ö.(NGŠ[‡¡Ì§è㲧f…™FKouäGGU· Po±WH´O³^DÑQI Šòf>Î)ðhÿñ–ÛÛ}3^Ð;Ãý¦m¬¶¸ñVŸ.c#]ÂÜj'JRmFö·ÛV?k¸}pOÊî<Ò7¡dÔ㺼-ëÈêžeº«/Uî�1m™¯¹QúÀø<·v›¬¾šíHÂ2…Y<ËÒ_I½~xI^hiT±Æø-"m´[Ó±ñÕ :Tòžƒw̳ló…±ôØ:l=[ŠNÔÇ vX(Üm«aæ—b™´‘UvÖÒt2 -iis«±êìÏ[ùd fÖr/Ü¡|Ÿ+%DlÙBS&A³Üvl°NZÄÒz�T-å†8‹µœZ©rÒVîé m•r3¢¯†˜"íñI-\u2@ý�™� ³¶4¾1"||ZîA±?XjïJOñ”ÃÔˆ¸ù/§PØø¬Bôèø°âL²!V¿,µVú¦´ žQz`§ÎÈ£Tº`^âÑÚwg ƒ"“38zƒÍ#ìcÞÝRÊ슼‡ûp8¬#cOxöÀ LÛR@³¾�ÕÂ÷àU^XaDšæ�õÀ;ˆï–ã¹ëÞ/B4¤�ÐY’yџГŸ‡è/c•C“×4Ætb¢ÉkŒU õ/>~÷æT.ç�ϧ8QQ¢3vx d=(žZ—‡Q‚Zjë) êg óqô “ Ú&e’‰å½¾¶µzƒL \˜¥‡VCç[ÀqaŽ“,§ªƒ¤Uñ ¨æ¤ßaFUt°8N¸îÖ�z0ï°,…+à)äs*¯Ûˆ¢$!2íò§+’&c¤Þ÷¬qt‚Õyáµi:Ô>ínþëM óÐÞúÝF¬¶øNéÖ2ÂÊ™[ëz«ÂéT1�ˆúªó3]xºllb Jqò»ƒ <äÜ|ÐU9ÖaËdÄQ'áðr47qîò5|xA©) =Ã#›a‡’¨åv�ù°jàeK¢^oˆ–pÖ#šªj#`”©µ6;µWµu-¸,×ÆRTÍ™ÏÛçÑô@kÓÇý©ó@ØkëÏn{ó�ß[²ží…åí–�küÝθ}štÛ‹.™!Ò¹V]P©Î~šßö¦§W?O1섟Чßi…úÙDš›D•pÈ?Ú€ýõI´ÜßîS;«Þ^YUWö9íÞî¤ùáâçÞ>…pÇõ`çâÝÄÖ:±2Eü…9Om Ïy‘pßúŸN@*Йeƒîèz}=XU:,ÜfŽtžr¬{ C»ú—ÒòáûvR�êãH Hÿy°Zê ºÝhë–Oy{Št€× O™Ý�è,�–ª[u ë˜þÙâ-$òï§E Bù¾û/Ýd^øðK’âqÆX�|Ÿ•š×¨ ¥Î:øtßAé©€ÒS"F¶š±–ÉpLŸ´|°v³Õ£¨%ö:»ÄÊ{kz»eËVšwÄ5O«åg<�ä •�Gáƒ`u‚_Ž>5æ,Î[ÉÄÓ�á6'-�yg€…Ø\UhG6¶Í@é-¦tÚ 2j&©-G˜ƒ0p "ùöùáﻹ‡¢€%ô¬dß –xŒÝà]PÆâ”&̳ۃ¾ã CÄñæ‘°¼’Ü+l¯Ìî‚å*ñ å=ÕÂA…HžÁë¤<èÙðŠIîvöxØR)ïÁâW³sû´ÌzUu‡u„ C3|mý}„)uÈò«Jín\M[¾°µD”žªtK¶C;÷~õ¦“~X¶Ì!}ë™k·,»SNp?ª�ÎjwoäDõϽÑF„é˜ WäÐó顤«&î~<çˆß@‹vy?wÏ¼í¡ƒ¢>,lbÛ”†ÜÞà,y8¾e£$¬å˜ ©¼¼15h†2§6›ÃÒÏK8ØrTš¥í+c!•vŠºfV‹ª*8©š‹^ÿüòË»;ÊáI™Îm0‡OÁ–¾Ù†¥,%ø&¬¶ rÀ×úuiÞ”´†Þ«}KÙ†XV¶Žl¥ƒn¢Õ]6§5ªŽåѯ=‘c�Eo«žôuìº�m /Ì>·ËÍJâQ³‰sñg‰—‚f®{A~Jíê"/ü¡5åHͱyázõh/@Þzh_zÞæЬ8ÊÚF,úVÅáʤô"ÞMÐY3—½M9Š‡[yð ¼Ë‡œÚ=‹ÿêž.”™µ> *˨k›.Ãߛ嶩7q¦ö÷¥ ç韡ÙÂÑk!?Àìµ j6hPžR8WÂIÐP!(•kàÆŽŒà‘ÚÂn %üX�ÖŽÃz�G‹ep>Ñ£ð±>#ÞKõ�wûTt‹ŠîS�_mÃfF{‘ÿ 2ëPŽôIÔ_�ìÌ×`dO½þÜ3¸†¡-Teß{ÍÉ
%PDF-1.5 %µµµµ 1 0 obj <>>> endobj 2 0 obj <> endobj 3 0 obj <>/XObject<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/Annots[ 22 0 R 23 0 R 24 0 R] /MediaBox[ 0 0 595.32 841.92] /Contents 4 0 R/Group<>/Tabs/S/StructParents 0>> endobj 4 0 obj <> stream xœµ<Û’Û6²ï®ò?°NÕVI[#q!f·¶Ö—8vÏzÇ““ï>p4 3i,QNÍþôþÂén $A�ʩIJ6Ý�¾ôù‹]]ÝË:úë_Ï_Ôu±¼+o¢ÏçWÛÇŸ_==–ç‹Uµ)êj»9ÿt¸®qèmYÜ”»¿ý-zùúUôòêù³ó7,b,Ndtuûü‹ø�E)Kb!#-X,utõðüYðã‡çÏ>Ï¢ù¿£«Ÿ?ûæyþìŸÏŸ!&7Whç,ÒLÇJÒÜϳOõ¡3ǃÎuÌ…}SÎõl3W³z¾�³è²Ü—Å\Ìvs9[ÞEðíGø¶…?BÀb@ïé¢?A~ÊãJÒXi;ãízk\ó¡œ/Ä,†¯lžÎÎàïèèÅçq€ ÉYÌR§ Âf±ê…`ErDëk �ÏöåÃ5TîB3q“&.¢eì-`Õ4Í¢«åçO¸8!ûÎÌ„æoÀù> ‰\&q*¢,ç±vø}`A.U¬sv‚M“X1öÝ<Ÿ}ÂÍý4Ïfø%ú”+â¹’!õMäšÐ’"ѱè±"x:gÉŒG7Å´)úš«X,&²&T³>kŸ ;ñæñ5gbäM²MsÒš’Ðo*‰žEoÁd‹uP¿²$æÊŸÊ%J%h"ZÇéDº ˆór…ÈYoƨ#ôæ«/CçÈ3ðd ö,CŸÉE,#F³våóg·Ur75�uÇÝ‚1ÿãÝw!¹‰„‘êu&Å ËUÃ@g`¢»Õàð%ùñ»º~Ü£·ø6èüüµa[�¢Ä[Ý@IÎA (.PS6KU¢Îñ×óîWxþ^¦x|¬bT«¯ä° 5ïÒ<âuçÒ‡ :X»Í]X�„Èv·±]‘ã8 Œ¾]ź€|›� T+Ï
Stunting pada balita merupakan salah satu masalah kesehatan yang signifikan di negara berkembang seperti Indonesia, yang disebabkan oleh kekurangan gizi kronis. Identifikasi dini stunting sangat penting untuk mengurangi dampaknya terhadap perkembangan anak. Penelitian ini bertujuan untuk membandingkan efektivitas metode decision tree Algoritma C4.5 dan deep learning dalam mengidentifikasi stunting pada balita dengan menggunakan perangkat lunak RapidMiner. Metode penelitian ini menggunakan pendekatan komparatif dengan dua model pembelajaran mesin, yakni Algoritma C4.5 dan deep learning, yang diterapkan pada data stunting. Hasil penelitian menunjukkan bahwa metode deep learning memiliki tingkat akurasi yang lebih tinggi dibandingkan dengan Algoritma C4.5 dalam mendeteksi stunting. Kesimpulannya, deep learning lebih efektif dalam mengidentifikasi stunting pada balita dibandingkan dengan Algoritma C4.5, sehingga direkomendasikan untuk digunakan dalam sistem pendeteksian stunting di Indonesia.
Keywords: pengerdilan, pohon keputusan, algoritma c4.5, pembelajaran mendalam, rapidminer
CHOLID, F., TRISHNANTI, D., & AZIES, H. AL. 2019. Pemetaan Faktor-Faktor yang Mempengaruhi Stunting pada Balita dengan Geographically Weighted Regression (GWR) Mapping of The Factors Affecting Stunting on Toddlers with Geographically Weighted Regression (GWR). SEMNAkes 2019 “Improving the Quality of Health Tharough Advances in Research of Health Sciences,” March 2020, 156–165. https://doi.org/10.17605/OSF.IO/9MZU7
GALASSO, E., & WAGSTAFF, A. 2019. The Aggregate Income Losses from Childhood Stunting and The Returns to A Nutrition Intervention Aimed at Reducing Stunting. Economics and Human Biology, 34(August), 225–238. https://doi.org/10.1016/j.ehb.2019.01.010
HIDAYAT, R. 2013. Sistem Prediksi Status Gizi Balita Dengan Menggunakan Support Vector Regression. Departemen Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor.
INDARWATI, T., IRAWATI, T., & RIMAWATI, E. 2019. Penggunaan Metode Linear Regression untuk Prediksi Penjualan Smartphone. Jurnal Teknologi Informasi Dan Komunikasi (TIKomSiN), 6(2). https://doi.org/10.30646/tikomsin.v6i2.369
KEMENKES RI. 2018. Buletin Stunting. Kementerian Kesehatan RI, 301(5), 1163–1178.
KEMENKES RI, & BPS. 2019. Laporan Pelaksanaan Integrasi Susenas Maret 2019 dan SSGBI Tahun 2019. In Badan Pusat Statistik, Jakarta - Indonesia.
KUSUMA, P. D. 2020. Machine Learning Teori, Program, Dan Studi Kasus. Deepublish.
LABOLO, A. Y., MOODUTO, S., BODE, A., & DRAJANA, I. C. R. 2022. Penerapan Algoritma Spport Vector Machine dan K-Nearest Neighbor Menggunkan Feature Selection Backward Elimination untuk Prediksi Status Penderita Stunting pada Balita. Jurnal Tecnoscienza, 6(2), 374–388.
https://doi.org/10.51158/tecnoscienza.v6i2.713
PERDANA, A. Y., LATUCONSINA, R., & DINIMAHARAWATI, A. 2021. Prediksi Stunting Pada Balita Dengan Algoritma Random Forest. ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.5 Oktober 2021, 8(5), 6650–6656.
PURNAMA, J. J., NAWAWI, H. M., ROSYIDA, S., RIDWANSYAH, & RISANDAR. 2020. Klasifikasi Mahasiswa Her Berbasis Algortima Svm Dan Decision Classification of Her Students Based on SVM Algorithm and. Jurnal Teknologi Informasi dan Ilmu Komputer, 7(6), 1253–1260. https://doi.org/10.25126/jtiik.202073080
RAMADHAN, A., SUSETYO, B., & INDAHWATI. 2019. Penerapan Metode Klasifikasi Random Forest dalam Mengidentifikasi Faktor Penting Penilaian Mutu Pendidikan. Jurnal Pendidikan dan Kebudayaan, 4(2), 169–182. https://doi.org/10.24832/jpnk.v4i2.1327
RETNONINGSIH, E., & PRAMUDITA, R. 2020. Mengenal Machine Learning dengan Teknik Supervised dan Unsupervised Learning Menggunakan Python. BINA INSANI ICT JOURNAL, 7(2), 156. https://doi.org/10.51211/biict.v7i2.1422
SUBDIREKTORAT ANALISIS STATISTIK, BPS. 2019. Indeks Pembangunan Manusia (IPM) 2019. Berita Resmi Statistik, 9, 1–8. https://www.bps.go.id/pressrelease/2020/02/17/1670/indeks-pembangunan-manusia--ipm--indonesia-pada-tahun-2019-mencapai-71-92.html
SUBDIREKTORAT STATISTIK KESEHATAN DAN PERUMAHAN, BPS. 2019. Statistik Perumahan dan Pemukiman 2019.
https://www.bps.go.id/publication/2020/08/31/6a9e70d6154fde75499239e6/statistik-perumahan-dan-permukiman-2019.html
SUBDIREKTORAT STATISTIK RUMAH TANGGA, BPS. 2019. Statistik Kesejahteraan Rakyat 2019. https://www.bps.go.id/publication/2019/11/22/1dfd4ad6cb598cd011b500f7/statistik-kesejahteraan-rakyat-2019.html